Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.881
Filtrar
1.
Gene ; 905: 148240, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316263

RESUMO

CircRNA, a non-coding RNA, is an ideal biomarker and a suitable potential therapeutic target for various disease due to its high stability, species conservation and cell/tissue specificity. Our previous study has found a circular RNA WWP2 (circWWP2) was significantly decreased in chicken macrophages during bacterial infection. However, the function of circWWP2 in chicken macrophages remains unclear. In this study, it was demonstrated that circWWP2 was a stable circular RNA created by back-splicing of exons 2 to 4 of WWP2 via PCR amplification, Sanger sequencing, RNase R exonuclease digestion, and RT-qPCR. Moreover, bioinformatics analysis showed circWWP2 could interact with 13 miRNAs and target 3,264 genes, which were significantly enriched in lysosomes, IgA-producing intestinal immune networks for IgA production, and Notch signaling pathway. Furthermore, CCK8 and RT-qPCR indicated that overexpression of circWWP2 could promote lipopolysaccharide (LPS)-induced cellular injury by decreasing cell viability and increasing the expression levels of pro-inflammatory cytokines and pro-apoptosis genes, and NO production. CircWWP2 may exert a potential target for the treatment of bacterial infection. Further experiments are necessary to validate the specific mechanism that circWWP2 regulates LPS induced cellular immune responses.


Assuntos
Infecções Bacterianas , MicroRNAs , Humanos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , Imunoglobulina A/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331476

RESUMO

IgA nephropathy (IgAN) is caused by deposition of IgA in the glomerular mesangium. The mechanism of selective deposition and production of IgA is unclear; however, we recently identified the involvement of IgA autoantibodies. Here, we show that CBX3 is another self-antigen for IgA in gddY mice, a spontaneous IgAN model, and in IgAN patients. A recombinant antibody derived from gddY mice bound to CBX3 expressed on the mesangial cell surface in vitro and to glomeruli in vivo. An elemental diet and antibiotic treatment decreased the levels of autoantibodies and IgAN symptoms in gddY mice. Serum IgA and the recombinant antibody from gddY mice also bound to oral bacteria of the mice and binding was competed with CBX3. One species of oral bacteria was markedly decreased in elemental diet-fed gddY mice and induced anti-CBX3 antibody in normal mice upon immunization. These data suggest that particular oral bacteria generate immune responses to produce IgA that cross-reacts with mesangial cells to initiate IgAN.


Assuntos
Glomerulonefrite por IGA , Humanos , Camundongos , Animais , Glomerulonefrite por IGA/metabolismo , Mesângio Glomerular/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina A/farmacologia , Glomérulos Renais/metabolismo , Autoanticorpos , Proteínas Cromossômicas não Histona/metabolismo
3.
Nutrients ; 16(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38337738

RESUMO

Athletes often take sport supplements to reduce fatigue and immune disturbances during or after training. This study evaluated the acute effects of concurrent ingestion of alkaline water and L-glutamine on the salivary immunity and hormone responses of boxers after training. Twelve male boxing athletes were recruited in this study. During regular training, the participants were randomly divided into three groups and asked to consume 400 mL of alkaline water (Group A), 0.15 g/kg body weight of L-glutamine with 400 mL of water (Group G), and 0.15 g/kg of L-glutamine with 400 mL of alkaline water (Group A+G) at the same time each day for three consecutive weeks. Before and immediately after the training, saliva, heart rates, and the rate of perceived exertion were investigated. The activity of α-amylase and concentrations of lactoferrin, immunoglobulin A (IgA), testosterone, and cortisol in saliva were measured. The results showed that the ratio of α-amylase activity/total protein (TP) significantly increased after training in Group A+G but not in Group A or G, whereas the ratios of lactoferrin/TP and IgA/TP were unaffected in all three groups. The concentrations of salivary testosterone after training increased significantly in Group A+G but not in Group A or G, whereas the salivary cortisol concentrations were unaltered in all groups. In conclusion, concurrent ingestion of 400 mL of alkaline water and 0.15 g/kg of L-glutamine before training enhanced the salivary α-amylase activity and testosterone concentration of boxers, which would be beneficial for post-exercise recovery.


Assuntos
Boxe , alfa-Amilases Salivares , Humanos , Masculino , Glutamina/metabolismo , Testosterona/metabolismo , Hidrocortisona/metabolismo , Lactoferrina/metabolismo , Imunoglobulina A/metabolismo , Atletas , Ingestão de Alimentos , Saliva/metabolismo
4.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38412360

RESUMO

A strain of Bacillus subtilis (MAFIC Y7) was isolated from the intestine of Tibetan pigs and was able to express high protease activity. The aim of this study was to characterize the proteases produced by MAFIC Y7, and to investigate the effects of protease addition on growth performance, ileal amino acid digestibility, and serum immunoglobulin and immune factors of broilers fed SBM-based diets, or on growth performance, carcass characteristics, and intestinal morphology of broilers fed CSM-based diets. B. subtilis (MAFIC Y7) expressed protease showed its optimal enzyme activity at 50 °C and pH 7.0. The coated crude enzyme (CCE) showed greater stability at pH 3.0 than its uncoated counterpart. Experiment 1 was conducted with six diets based on three levels of crude protein (CP)-CPlow, CPmedium, and CPhigh-with or without CCE. In CPlow, CCE increased gain:feed (G:F) (days 1 to 21, days 1 to 42) by 8%, 3%, respectively, and enhanced apparent ileal digestibility (AID) of crude protein and lysine (on day 42) by 8.8%, 4.6%, respectively, compared with diets containing no CCE (P < 0.05). CCE increased G:F from days 1 to 21 from 0.63 to 0.68, improved G:F and average daily gain (ADG) during days 1 to 42, and enhanced AID of crude protein, lysine, cysteine, and isoleucine on day 42 compared with the unsupplemented treatments (in CPmedium, P < 0.05). CCE increased serum IgA (on day 21), serum IgA and IgG and increased serum IL-10 (on day 42), but decreased serum tumor necrosis factor-α (TNF-α; on day 21), and serum IL-8 and TNF-α (on day 42) compared with unsupplemented treatments. At CPhigh, CCE decreased serum levels of IL-6 and TNF-α (on day 21), and IL-8 and TNF-α (on day 42) compared with unsupplemented treatments (in CPhigh, P < 0.05). In experiment 2, CSM-based diets with two lysine-to-protein ratios (5.2% or 5.5%) with or without CCE. In the high Lys diet (5.5% Lys:protein), CCE increased ADG and G:F, increased carcass, but decreased abdominal fat compared with the unsupplemented treatment (P < 0.05). In the 5.2% Lys:protein dietary treatment, CCE improved duodenal villus height compared with the unsupplemented treatment (P < 0.05). Supplementation of protease produced by MAFIC Y7 was associated with lower inflammatory responses in SBM diets (CPmedium or CPhigh) and improved ADG in broilers fed CPmedium or CPhigh. The proteases improved ADG and the efficiency of CSM use when the ratio of Lys to protein was 5.5%.


The aim of this study was to investigate the effects of Bacillus subtilis (MAFIC Y7)-expressed protease on reducing inflammatory responses of soybean meal (SBM) diets and improving the efficiency of cottonseed meal (CSM) in broilers. Experiment 1 was conducted with six dietary treatments based on three levels of crude protein (CP)­CPlow, CPmedium, and CPhigh­without or with proteases (0 or 4,000 U/kg). Supplementation of proteases significantly improved growth performance, gain:feed (G:F), and apparent ileal digestibility of crude protein and amino acids (cysteine, isoleucine, and histidine) in broilers fed CPmedium treatment (P < 0.05). Proteases inhibited inflammatory responses in SBM-based diets by decreasing serum tumor necrosis factor-α (TNF-α) (in CPmedium and CPhigh), and interleukin (IL)-6 (in CPhigh); and IL-8 and TNF-α (in CPmedium and CPhigh) on day 21. In experiment 2, broilers were fed with CSM-based diets with two ratios of lysine-to-protein (5.2% or 5.5%) with or without proteases. Proteases in the diet of 5.5% Lys to protein ratio increased growth performance and G:F compared to diets without proteases (P < 0.05). Proteases produced by MAFIC Y7 improved growth performance and G:F in CPmedium. Supplementation of protease was associated with lower inflammatory responses of broilers fed SBM-based diets (CPmedium or CPhigh) and improved the efficiency of CSM use when the ratio of lysine-to-protein was 5.5%.


Assuntos
Bacillus subtilis , Lisina , Animais , Suínos , Lisina/metabolismo , Galinhas/fisiologia , Óleo de Sementes de Algodão , Peptídeo Hidrolases/metabolismo , Farinha , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Dieta/veterinária , Anti-Inflamatórios , Imunoglobulina A/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
5.
Phytomedicine ; 124: 155301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181531

RESUMO

BACKGROUND: Despite the notable pharmacological potential of natural ginsenosides, their industrial application is hindered by low oral bioavailability. Recent research centers on the production of less-glycosylated minor ginsenosides. PURPOSE: This study aimed to explore the effect of a biologically synthesized ginsenoside CK-rich minor ginsenoside complex (AceCK40), on ameliorating colitis using DSS-induced colitis models in vitro and in vivo. METHODS: The ginsenoside composition of AceCK40 was determined by HPLC-ELSD and UHPLC-MS/MS analyses. In vitro colitis model was established using dextran sodium sulfate (DSS)-induced Caco-2 intestinal epithelial model. For in vivo experiments, DSS-induced severe colitis mouse model was established. RESULTS: In DSS-stimulated Caco-2 cells, AceCK40 downregulated mitogen-activated protein kinase (MAPK) activation (p < 0.05), inhibited monocyte chemoattractant protein-1 (MCP-1) production (p < 0.05), and enhanced MUC2 expression (p < 0.05), mediated via signaling pathway regulation. Daily AceCK40 administration at doses of 10 and 30 mg/kg/day was well tolerated by DSS-induced severe colitis mice. These doses led to significant alleviation of disease activity index score (> 36.0% decrease, p < 0.05), increased luminal immunoglobulin (Ig)G (> 37.6% increase, p < 0.001) and IgA (> 33.8% increase, p < 0.001), lowered interleukin (IL)-6 (> 65.7% decrease, p < 0.01) and MCP-1 (> 116.2% decrease, p < 0.05), as well as elevated serum IgA (> 51.4% increase, p < 0.001) and lowered serum IL-6 (112.3% decrease at 30 mg/kg, p < 0.001). Hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining revealed that DSS-mediated thickening of the muscular externa, extensive submucosal edema, crypt distortion, and decreased mucin droplets were significantly alleviated by AceCK40 administration. Additionally, daily administration of AceCK40 led to significant recovery of colonic tight junctions damaged by DSS through the elevation in the expression of adhesion molecules, including occludin, E-cadherin, and N-cadherin. CONCLUSION: This study presents the initial evidence elucidating the anti-colitis effects of AceCK40 and its underlying mechanism of action through sequential in vitro and in vivo systems employing DSS stimulation. Our findings provide valuable fundamental data for the utilization of AceCK40 in the development of novel anti-colitis candidates.


Assuntos
Colite , Ginsenosídeos , Humanos , Camundongos , Animais , Ginsenosídeos/metabolismo , Células CACO-2 , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo , Imunoglobulina A/metabolismo , Imunoglobulina A/farmacologia , Imunoglobulina A/uso terapêutico , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(2): 148-157, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38284256

RESUMO

Objective To investigate the expression and clinical significance of PD-1 and its ligand PD-L1 in peripheral blood CD19+CD25+ regulatory B cells (Bregs) in patients with systemic lupus erythematosus (SLE). Methods Peripheral blood samples were collected from 50 patients and 41 healthy controls (HCs). The proportion of CD19+CD25+Bregs in peripheral blood as well as the expression of PD-1+B and PD-L1+B cells on CD19+CD25+/-B cells, were detected by flow cytometry. At the same time, clinical information, such as clinical manifestations and laboratory indexes, was collected from patients. CD4+T cells and CD19+B cells were isolated by immunomagnetic beads and co-cultured in vitro to detect the differentiation of Bregs. Results The proportion of CD19+CD25+Bregs in the peripheral blood of SLE patients was lower than that in HC, while the expression of PD-1 and PD-L1 on Bregs was higher than that in HCs. SLE patients with pleural effusion, arthritis, and elevated CRP had a higher frequency of Bregs compared to the corresponding negative group. SLE patients with decreased immunoglobulin M (IgM) and positive anti-ribonuclear protein (RNP) antibodies had a lower frequency of Bregs compared to the corresponding negative group. SLE patients with infection, fever, arthritis, and elevated immunoglobulin A (IgA) had a higher frequency of CD19+CD25+PD-1+ cells compared to the corresponding negative group. SLE patients with infection, fever, and elevated IgA had a higher frequency of CD19+CD25+PD-L1+ cells compared to the corresponding negative group. And activated CD4+T cells were beneficial to the expression of CD25 on CD19+B cells. Conclusion The peripheral blood CD19+CD25+ Bregs are decreased in SLE patients, while the expression of PD-1 and PD-L1 on cell surface is increased, which is correlated with clinical manifestations and laboratory parameters. Activation of CD4+T cells promotes the differentiation of Bregs.


Assuntos
Artrite , Linfócitos B Reguladores , Lúpus Eritematoso Sistêmico , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1 , Linfócitos B Reguladores/metabolismo , Antígenos CD19/metabolismo , Artrite/metabolismo , Imunoglobulina A/metabolismo , Citometria de Fluxo , Linfócitos T Reguladores
7.
Dev Comp Immunol ; 151: 105094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951325

RESUMO

In recent years, increasing interest has focused on natural components extracted from plants, among which plant polysaccharides as natural immunomodulators that can promote animal immunity. The present study was performed to investigate the effect of feed supplement Pseudostellaria Heterophylla Polysaccharide (PHP) on serum Immunoglobulins, T lymphocyte subpopulations, Cytokines and Lysozyme (LZM) activity in chicks. In addition, the influence of PHP on splenic gene expression was investigated by transcriptome sequencing. Four hundred 7-day-old Gushi cocks were randomly divided into four groups in a completely randomized design. The chicks were fed with a basal diet supplemented with 0 (CON-A), 100 (PHP-L), 200 (PHP-M) and 400 (PHP-H) mg/kg PHP. Blood and spleen samples were collected from 6 randomly selected chicks in each group at 14, 21, 28, and 35 days of age. The results showed that compared to the CON-A group, the PHP-M group exhibited significant increases in the levels of IgA, IgG, IgM, CD3, and LZM in the serum at 14, 21, 28, and 35 days (P < 0.05), and at 28 d, there was a significant quadratic relationship between the levels of dietary PHP and the levels of IgG, IgM, IFN-γ, IL-2, CD3, and LZM. Furthermore, a total of 470 differentially expressed genes (DEGs) were identified in spleen from PHP-M and CON-A at 28 d. These DEGs were significantly enriched in the Phagosome, Intestinal immune network for IgA production and Cytokine-cytokine receptor interaction pathways. The present investigation highlights the ameliorating effect of dietary PHP on immunological variables and spleen of chicks, the study suggests that PHP supplementation can enhance immunity and positively impact spleen mRNA expression in chicks.


Assuntos
Suplementos Nutricionais , Baço , Animais , Baço/metabolismo , Dieta , Citocinas/metabolismo , Polissacarídeos/metabolismo , Imunoglobulina G/metabolismo , RNA Mensageiro/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina M/metabolismo , Galinhas
8.
Altern Ther Health Med ; 30(1): 419-425, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37820669

RESUMO

Context: Studies have reported that the incidence and severity of IgA nephropathy (IgAN) are closely related to the imbalance of the intestinal flora. Imbalance of the intestinal flora may cause abnormalities, such as intestinal mucosal immunity or mesenteric B1 lymphocyte subsets. These can lead to an increase in immunoglobulin A (IgA) production and IgA structural changing, which can eventually cause IgA1 deposition in the glomerular mesangial area and nephritis. Objective: The study intended to explore whether the LPS/TLR4 pathway regulates mesenteric B cells, secreting Gd-IgA1 to induce IgA nephropathy. Design: The research team designed an animal study. Setting: The study took place at Department of Nephrology, Minhang Hospital, Fudan University. Animals: The animals were 60 specific pathogen free (SPF) C57BL/6 (B6, H-2b) male mice from that were 6-8 weeks old and weighed 20-25 grams. Intervention: The research team established a mouse model of IgA nephropathy. The team created five groups of mice: (1) the NC group, a normal negative control group without induced nephropathy and with no treatments; (2) the IgA nephropathy (IgAN) group, a positive control group with induced nephropathy and with no treatments; (3) the IgAN+anti-TLR4 group, an intervention group, with induced nephropathy and with a TLR4-antibody (anti-TLR4) treatment; (4) the IgAN+GEC group, an intervention group, with induced nephropathy and with treatment with glutamine enteric-coated capsules (GEC); and (5) the IgAN+anti-TLR4+GEC group, an intervention group, with induced nephropathy and with treatment with anti-TLR4 and GEC. Outcome Measures: The research team collected the blood and urine of all the mice and used an enzyme-linked immunoassay (ELISA) to analyze the levels of blood creatinine, urine protein, and urea nitrogen (BUN). The team also used the ELISA to analyze signal molecules for serum inflammation: interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP-1), cyclooxygenase-2 (COX2), and galactose-deficient IgA1(Gd-IgA1). The team analyzed the distribution and content of IgA+B220+B lymphocytes in the intestinal tissues of all the mice, using tissue immunofluorescence tracking technology, and used hematoxylin-eosin (HE) staining to analyze the pathological damage in the kidney tissue. For analysis of glomerular IgA deposition, the team used a tissue immunofluorescence technique, and for detection of protein expression-toll-like receptor 4 (TLR4), B-cell activating factor (BAFF), and a proliferation-inducing ligand (APRIL)-in mesenteric lymphoid tissues, the team used western blot analysis. Results: For the five groups of mice, the amount or degree of the physiological indicators and inflammatory factors that ELISA detected, the B lymphocytes and IgA sedimentation that immunofluorescence tracing measured, the kidney pathological that HE staining detected, and the expression of immune-related proteins that western blotting measured, all showed a common trend: IgAN group> IgAN+ glomerular endothelial cells (GEC) group> IgAN+anti-TLR4 group> IgAN+anti-TLR4+GEC group> NC group. Conclusions: The TLR4 antibody and GEC for the treatment of the intestinal tract can regulate and repair intestinal function, so that IgAN can also be relieved at the same time. The results supported the hypothesis that a relationship exists between IgAN and the LPS/TLR4 pathway that regulates mesenteric B cells to secrete low-glycosylated poly-IgA1, which provides a new potential therapeutic plan for IgA nephritis.


Assuntos
Glomerulonefrite por IGA , Nefrite , Humanos , Masculino , Camundongos , Animais , Glomerulonefrite por IGA/metabolismo , Glomerulonefrite por IGA/patologia , Receptor 4 Toll-Like , Lipopolissacarídeos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos Endogâmicos C57BL , Imunoglobulina A/metabolismo
9.
Infect Immun ; 92(1): e0029223, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014948

RESUMO

Activation of Th17 cell responses, including the production of IL-17A and IL-21, contributes to host defense and inflammatory responses by coordinating adaptive and innate immune responses. IL-17A and IL-17F signal through a multimeric receptor, which includes the IL-17 receptor A (IL-17RA) subunit and the IL-17RC subunit. IL-17RA is expressed by many cell types, and data from previous studies suggest that loss of IL-17 receptor is required to limit immunopathology in the Helicobacter pylori model of infection. Here, an Il17ra-/- mouse was generated on the FVB/n background, and the role of IL-17 signaling in the maintenance of barrier responses to H. pylori was investigated. Generating the Il17ra-/- on the FVB/n background allowed for the examination of responses in the paragastric lymph node and will allow for future investigation into carcinogenesis. While uninfected Il17ra-/- mice do not develop spontaneous gastritis following H. pylori infection, Il17ra-/- mice develop severe gastric inflammation accompanied by lymphoid follicle production and exacerbated production of Th17 cytokines. Increased inflammation in the tissue, increased IgA levels in the lumen, and reduced production of Muc5ac in the corpus correlate with increased H. pylori-induced paragastric lymph node activation. These data suggest that the cross talk between immune cells and epithelial cells regulates mucin production, IgA production, and translocation, impacting the integrity of the gastric mucosa and therefore activating of the adaptive immune response.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Camundongos , Animais , Interleucina-17/genética , Interleucina-17/metabolismo , Helicobacter pylori/fisiologia , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Mucosa Gástrica/metabolismo , Inflamação/metabolismo , Imunoglobulina A/metabolismo
10.
Clin Exp Nephrol ; 28(3): 192-200, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37806974

RESUMO

BACKGROUND: The relationship between the major periodontal bacteria, Porphyromonas gingivalis, and the pathogenesis of IgA nephropathy (IgAN)-particularly with respect to galactose-deficient IgA1 (Gd-IgA1)-has not been fully elucidated. METHODS: Saliva samples from 30 IgAN patients and 44 patients with chronic kidney disease (CKD) were subjected to analysis of P. gingivalis status via polymerase chain reaction using a set of P. gingivalis-specific primers. The associations between P. gingivalis presence and clinical parameters, including plasma Gd-IgA1, were analyzed in each group. RESULTS: Compared with the CKD group, the IgAN group demonstrated significantly higher plasma Gd-IgA1 levels (p < 0.05). Compared with the P. gingivalis-negative subgroup, the P. gingivalis-positive subgroup exhibited significantly higher plasma Gd-IgA1 levels in both IgAN and CKD patients (p < 0.05). Additionally, among IgAN patients, the P. gingivalis-positive subgroup displayed significantly higher plasma Gd-IgA1 and urine protein levels, compared with the P. gingivalis-negative subgroup (p < 0.05). With respect to renal biopsy findings, the frequencies of segmental glomerulosclerosis and tubular atrophy/interstitial fibrosis were significantly greater in the P. gingivalis-positive subgroup than in the P. gingivalis-negative subgroup, according to the Oxford classification of IgAN (p < 0.05). CONCLUSION: Our findings suggest an association between the presence of P. gingivalis in the oral cavity and the pathogenesis of IgAN, mediated by increased levels of Gd-IgA1.


Assuntos
Glomerulonefrite por IGA , Insuficiência Renal Crônica , Humanos , Glomerulonefrite por IGA/patologia , Porphyromonas gingivalis/metabolismo , Galactose/metabolismo , Imunoglobulina A/metabolismo , Boca
11.
Immunopharmacol Immunotoxicol ; 46(2): 218-228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151955

RESUMO

BACKGROUND: Hydroxychloroquine (HCQ) has emerged as a potential and secure antiproteinuric agent in IgA nephropathy (IgAN). This study endeavored to explore the impact of HCQ on the immune functionality and intestinal flora disorders in IgAN rats, as well as to elucidate the underlying mechanisms through in vivo and in vitro experiments. METHODS: IgAN model was established in Sprague-Dawley rats through the administration of BSA, LPS, and CCl4, and the IgAN rats received a continuous 8-week treatment with HCQ. Moreover, the human glomerular mesangial cells (HMCs) were incubated with IgA1 to establish an in vitro cellular model of IgAN. At the end of experimental period, samples were collected for further analysis. RESULTS: HCQ ameliorated the elevated levels of 24hUTP, SCr, BUN, the number of urinary RBC, and the activation of inflammation-related proteins within the TLR4/NF-κB signaling pathway. In the IgAN rat group, there was a pronounced escalation in IgA deposition, mesangial matrix hyperplasia, and glomerular inflammatory cell infiltration, while the administration of HCQ effectively mitigated these pathological changes. In addition, the reduced production of CD4+CD25+Foxp3+ Treg in the IgAN group was effectively reversed by HCQ. Furthermore, HCQ has the capacity to restore the compromised state of the intestinal mucosal barrier induced by IgAN and mitigate the circumstances of intestinal permeability and disruption in the intestinal flora. CONCLUSION: HCQ diminishes IgA aberrant glycosylation levels, ameliorates renal and intestinal histopathological damage, and attenuates intestinal flora disorders and immune dysfunction in IgAN rats by means of activating the C1GALT1/Cosmc pathway.


Assuntos
Microbioma Gastrointestinal , Glomerulonefrite por IGA , Humanos , Ratos , Animais , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/metabolismo , Hidroxicloroquina/farmacologia , Ratos Sprague-Dawley , Imunoglobulina A/metabolismo , Galactosiltransferases
12.
Immunity ; 56(11): 2570-2583.e6, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37909039

RESUMO

Dimeric IgA (dIgA) can move through cells via the IgA/IgM polymeric immunoglobulin receptor (PIGR), which is expressed mainly on mucosal epithelia. Here, we studied the ability of dIgA to target commonly mutated cytoplasmic oncodrivers. Mutation-specific dIgA, but not IgG, neutralized KRASG12D within ovarian carcinoma cells and expelled this oncodriver from tumor cells. dIgA binding changed endosomal trafficking of KRASG12D from accumulation in recycling endosomes to aggregation in the early/late endosomes through which dIgA transcytoses. dIgA targeting of KRASG12D abrogated tumor cell proliferation in cell culture assays. In vivo, KRASG12D-specific dIgA1 limited the growth of KRASG12D-mutated ovarian and lung carcinomas in a manner dependent on CD8+ T cells. dIgA specific for IDH1R132H reduced colon cancer growth, demonstrating effective targeting of a cytoplasmic oncodriver not associated with surface receptors. dIgA targeting of KRASG12D restricted tumor growth more effectively than small-molecule KRASG12D inhibitors, supporting the potential of this approach for the treatment of human cancers.


Assuntos
Carcinoma , Imunoglobulina A , Humanos , Imunoglobulina A/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Citoplasma/metabolismo
13.
J Vis Exp ; (200)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37902367

RESUMO

The increase of circulating galactose-deficient IgA1 (Gd-IgA1) is caused by excessive activation of IgA-positive secretory cells in the process of mucosal immune responses, which is a critical link in the pathogenesis of IgA nephropathy (IgAN). Peyer's patch, the prominent place where B lymphocytes are transformed into IgA-secreting plasma cells, is the primary source of IgA. In addition, the lower expression of core 1ß-1,3-galactosyltransferase (C1GalT1) and its molecular chaperone, C1GalT1-specific molecular chaperone (Cosmc), is related to abnormal glycosylation of IgA1 in IgAN patients. Our clinical experience shows that Dioscoreae Nipponicae Rhizoma's (DNR) herbal medicine can relieve proteinuria and hematuria and improve renal function in IgAN patients. Dioscin (DIO) is one of the main active ingredients of DNR, which has various pharmacological activities. This study explores DIO's possible mechanism in treating IgAN.The IgAN model mouse was established by mucosal immune induction. The mice were divided into the control, model, and DIO gavage groups. The glomerular IgA deposition in mice, renal pathological changes, and B cell markers CD20 and CXCR5 expression in Peyer's patch were detected by immunofluorescence and immunohistochemistry. After lipopolysaccharide (LPS) stimulation, DIO's effects on DAKIKI cells proliferation, IgA and Gd-IgA1 secretion, C1GalT1, and Cosmc expression were studied by cell counting kit-8 (CCK-8) assay, enzyme-linked immunosorbent assay (ELISA) test, quantitative real-time polymerase chain reaction (QRT-PCR), and western blotting (WB). In in vivo studies, IgA deposition accompanied by glomerular mesangial hyperplasia and increased expression of CD20 and CXCR5 in Peyer's patch in the IgAN model mouse was alleviated by DIO. In vitro studies showed 0.25 µg/mL to 1.0 µg/mL DIO inhibited LPS-induced DAKIKI cell proliferation, IgA and Gd-IgA1 secretion, and up-regulated the mRNA and protein expression of C1GalT1 and Cosmc. This study demonstrates that DIO may reduce Gd-IgA1 production by inhibiting excessive activation of IgA-secreting cells and up-regulating C1GALT1/Cosmc expression.


Assuntos
Glomerulonefrite por IGA , Humanos , Animais , Camundongos , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/genética , Lipopolissacarídeos/farmacologia , Imunoglobulina A/metabolismo , Chaperonas Moleculares/metabolismo , Galactose/metabolismo
14.
J Cancer Res Clin Oncol ; 149(19): 17683-17690, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897659

RESUMO

BACKGROUND: The polymeric immunoglobulin receptor (pIgR) is a transmembrane transporter of polymeric IgA through the intestinal epithelium. Its overexpression has been reported in several cancers, but its role as a diagnostic and prognostic biomarker of oncogenesis is currently unclear. METHOD: A literature search was conducted to summarize the functions of pIgR, its expression levels, and its clinical implications. RESULTS: pIgR expression has previously been investigated by proteomic analysis, RNA sequencing, and tissue microarray at the level of both RNA and protein in various cancers including pancreatic, esophageal, gastric, lung, and liver. However, studies have reported inconsistent results on how pIgR levels affect clinical outcomes such as survival rate and chemotherapy resistance. Possible explanations include pIgR mRNA levels being minimally correlated with the rate of downstream pIgR protein synthesis, and the diversity of antibodies used in immunohistochemistry studies further magnifying this ambiguity. In ovarian cancer cells, the transcytosis of IgA accompanied a series of transcriptional changes in intracellular inflammatory pathways that inhibit the progression of cancer, including the upregulation of IFN-gamma and downregulation of tumor-promoting ephrins. These findings suggest that both the levels of pIgR and secreted IgA from tumor-infiltrating B cells affect clinical outcomes. CONCLUSION: Overall, no direct correlation was observed between the levels of pIgR inside tumor tissue and the clinical features in cancer patients. Measuring pIgR protein levels with a more specific and possibly chemically defined antibody, along with tumoral IgA, is a potential solution to better understand the pathways and consequences of pIgR overexpression in cancer cells.


Assuntos
Neoplasias , Receptores de Imunoglobulina Polimérica , Humanos , Regulação para Baixo , Imunoglobulina A/genética , Imunoglobulina A/metabolismo , Neoplasias/genética , Proteômica , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/metabolismo
15.
Nat Commun ; 14(1): 6216, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798283

RESUMO

Transglutaminase 3 (TG3), the autoantigen of dermatitis herpetiformis (DH), is a calcium dependent enzyme that targets glutamine residues in polypeptides for either transamidation or deamidation modifications. To become catalytically active TG3 requires proteolytic cleavage between the core domain and two C-terminal ß-barrels (C1C2). Here, we report four X-ray crystal structures representing inactive and active conformations of human TG3 in complex with a TG3-specific Fab fragment of a DH patient derived antibody. We demonstrate that cleaved TG3, upon binding of a substrate-mimicking inhibitor, undergoes a large conformational change as a ß-sheet in the catalytic core domain moves and C1C2 detaches. The unique enzyme-substrate conformation of TG3 without C1C2 is recognized by DH autoantibodies. The findings support a model where B-cell receptors of TG3-specific B cells bind and internalize TG3-gluten enzyme-substrate complexes thereby facilitating gluten-antigen presentation, T-cell help and autoantibody production.


Assuntos
Doença Celíaca , Dermatite Herpetiforme , Humanos , Autoanticorpos , Transglutaminases , Imunoglobulina A/metabolismo , Glutens
16.
JCI Insight ; 8(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811653

RESUMO

Transglutaminase 2 (TGase2) has been shown to contribute to the mesangial IgA1 deposition in a humanized mouse model of IgA nephropathy (IgAN), but the mechanism is not fully understood. In this study, we found that inhibition of TGase2 activity could dramatically decrease the amount of polymeric IgA1 (pIgA1) isolated from patients with IgAN that interacts with human mesangial cells (HMC). TGase2 was expressed both in the cytosol and on the membrane of HMC. Upon treatment with pIgA1, there were more TGase2 recruited to the membrane. Using a cell model of mesangial deposition of pIgA1, we identified 253 potential TGase2-associated proteins in the cytosolic fraction and observed a higher concentration of cellular vesicles and increased expression of Ras homolog family member A (RhoA) in HMC after pIgA1 stimulation. Both the amount of pIgA1 deposited on HMC and membrane TGase2 level were decreased by inhibition of the vesicle trafficking pathway. Mechanistically, TGase2 was found to be coprecipitated with RhoA in the cellular vesicles. Membrane TGase2 expression was greatly increased by overexpression of RhoA, while it was reduced by knockdown of RhoA. Our in vitro approach demonstrated that TGase2 was transported from the cytosol to the membrane through a RhoA-mediated vesicle-trafficking pathway that can facilitate pIgA1 interaction with mesangium in IgAN.


Assuntos
Glomerulonefrite por IGA , Animais , Camundongos , Humanos , Glomerulonefrite por IGA/metabolismo , Imunoglobulina A/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Proteína rhoA de Ligação ao GTP/metabolismo , Mesângio Glomerular/metabolismo , Polímeros
17.
Drugs R D ; 23(3): 245-255, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37466834

RESUMO

BACKGROUND AND OBJECTIVE: Human plasma is used for the generation of several life-saving drugs and contains valuable antibodies from the immunoglobulin classes IgG, IgM and IgA. Purified intravenous IgG solutions (IVIGs) form the majority of plasma-derived medicine to treat patients with various forms of immunodeficiencies. In conventional IVIG manufacturing processes, immunoglobulin classes IgM and IgA are often discarded as contaminants, but these antibody classes have been proven to be effective for the treatment of acute bacterial infections. Considering the increase in demand for human plasma-derived products and the ethical value of the raw material, a more resource-saving usage of human plasma is needed. Intensive research over the last decades showed that adverse reactions to IVIGs depend on the presence of thrombogenic factors, partially unfolded proteins, non-specific activation of the complement system, and blood group specific antibodies. Therefore, new IVIG preparations with reduced risks of adverse reactions are desirable. METHOD: A new manufacturing process that yields two biologics was established and quality attributes of the new IVIG solution (Yimmugo®) obtained from this process are presented. RESULTS: Here, we provide a biochemical characterization of Yimmugo®, a new 10% IVIG preparation. It is derived from human blood plasma by a combined manufacturing process, where IgM and IgA are retained for the production of a new biologic (trimodulin, currently under investigation in phase III clinical trials). Several improvements have been implemented in the manufacturing of Yimmugo® to reduce the risk of adverse reactions. Gentle and efficient mixing by vibration (called "vibromixing") during a process step where proteins are at risk to aggregate was implemented to potentially minimize protein damage. In addition, a dedicated process step for the removal of the complement system activator properdin was implemented, which resulted in very low anticomplementary activity levels. The absence of measurable thrombogenic activity in combination with a very high degree of functional monomeric antibodies predict excellent efficacy and tolerability. CONCLUSION: Yimmugo® constitutes a new high quality IVIG preparation derived from a novel manufacturing process that takes advantage of the full therapeutic immunoglobulin potential of human plasma.


Assuntos
Imunoglobulina G , Imunoglobulinas Intravenosas , Humanos , Imunoglobulinas Intravenosas/química , Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos , Imunoglobulina A/metabolismo , Imunoglobulina M/metabolismo , Plasma/metabolismo
18.
Int Immunopharmacol ; 122: 110545, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390644

RESUMO

Pulmonary fibrosis is an interstitial lung disease caused by various factors such as exposure to workplace environmental contaminants, drugs, or X-rays. Epithelial cells are among the driving factors of pulmonary fibrosis. Immunoglobulin A (IgA), traditionally thought to be secreted by B cells, is an important immune factor involved in respiratory mucosal immunity. In the current study, we found that lung epithelial cells are involved in IgA secretion, which, in turn, promotes pulmonary fibrosis. Spatial transcriptomics and single-cell sequencing suggest that Igha transcripts were highly expressed in the fibrotic lesion areas of lungs from silica-treated mice. Reconstruction of B-cell receptor (BCR) sequences revealed a new cluster of AT2-like epithelial cells with a shared BCR and high expression of genes related to IgA production. Furthermore, the secretion of IgA by AT2-like cells was trapped by the extracellular matrix and aggravated pulmonary fibrosis by activating fibroblasts. Targeted blockade of IgA secretion by pulmonary epithelial cells may be a potential strategy for treating pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Dióxido de Silício/toxicidade , Imunoglobulina A/metabolismo , Pulmão/patologia , Matriz Extracelular/metabolismo , Imunoglobulina A Secretora/metabolismo , Fibrose
19.
Cancer Immunol Immunother ; 72(9): 3063-3077, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37338671

RESUMO

Since mice do not express a homologue of the human Fc alpha receptor (FcαRI or CD89), a transgenic mouse model was generated in four different backgrounds (C57BL/6, BALB/c, SCID and NXG) expressing the FcαRI under the endogenous human promoter. In this study, we describe previously unknown characteristics of this model, such as the integration site of the FCAR gene, the CD89 expression pattern in healthy male and female mice and in tumor-bearing mice, expression of myeloid activation markers and FcγRs and IgA/CD89-mediated tumor killing capacity. In all mouse strains, CD89 expression is highest in neutrophils, intermediate on other myeloid cells such as eosinophils and DC subsets and inducible on, among others, monocytes, macrophages and Kupffer cells. CD89 expression levels are highest in BALB/c and SCID, lower in C57BL/6 and lowest in NXG mice. Additionally, CD89 expression on myeloid cells is increased in tumor-bearing mice across all mouse strains. Using Targeted Locus Amplification, we determined that the hCD89 transgene has integrated in chromosome 4. Furthermore, we established that wildtype and hCD89 transgenic mice have a similar composition and phenotype of immune cells. Finally, IgA-mediated killing of tumor cells is most potent with neutrophils from BALB/c and C57BL/6 and less with neutrophils from SCID and NXG mice. However, when effector cells from whole blood are used, SCID and BALB/c are most efficient, since these strains have a much higher number of neutrophils. Overall, hCD89 transgenic mice provide a very powerful model to test the efficacy of IgA immunotherapy against infectious diseases and cancer.


Assuntos
Imunoglobulina A , Neoplasias , Camundongos , Humanos , Masculino , Feminino , Animais , Camundongos Transgênicos , Imunoglobulina A/metabolismo , Camundongos SCID , Camundongos Endogâmicos C57BL , Receptores Fc
20.
Kidney Int ; 104(2): 254-264, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37263354

RESUMO

Many patients with immunoglobulin A nephropathy (IgAN) progress to kidney failure even with optimal supportive care. An improved understanding of the pathophysiology of IgAN in recent years has led to the investigation of targeted therapies with acceptable tolerability that may address the underlying causes of IgAN or the pathogenesis of kidney injury. The complement system-particularly the lectin and alternative pathways of complement-has emerged as a key mediator of kidney injury in IgAN and a possible target for investigational therapy. This review will focus on the lectin pathway. The examination of kidney biopsies has consistently shown glomerular deposition of mannan-binding lectin (1 of 6 pattern-recognition molecules that activate the lectin pathway) together with IgA1 in up to 50% of patients with IgAN. Glomerular deposition of pattern-recognition molecules for the lectin pathway is associated with more severe glomerular damage and more severe proteinuria and hematuria. Emerging research suggests that the lectin pathway may also contribute to tubulointerstitial fibrosis in IgAN and that collectin-11 is a key mediator of this association. This review summarizes the growing scientific and clinical evidence supporting the role of the lectin pathway in IgAN and examines the possible therapeutic role of lectin pathway inhibition for these patients.


Assuntos
Glomerulonefrite por IGA , Humanos , Glomerulonefrite por IGA/patologia , Lectinas/metabolismo , Glomérulos Renais/patologia , Rim/patologia , Imunoglobulina A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...